Документ подписан простой электронной подписью Информация о владельце:

ФИО: Бакулина Светлана Юрьевна МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Должность: Ректор

дата подписанфедеральное поступать подписанфедеральное учреждение высшего образования Уникальный программный клюж Самарский госу дарственный социально-педагогический университет» 69cecd732515521593bcd52ba91fbccab381eef2

> Программа вступительных испытаний по общеобразовательному предмету «Естествознание»

Пояснительная записка

Программа вступительного испытания в ее содержательной части формируется на основе образовательных программ уровней основного общего и среднего образования и позволяет проверить уровень освоения абитуриентами Федерального государственного образовательного стандарта основного общего и Федерального государственного образовательного стандарта среднего общегообразования.

Вступительное испытание проводиться в форме письменного тестирования.

В процессе подготовки к вступительному испытанию абитуриент должен самостоятельно изучить или обновить полученные ранее знания, умения, навыки, характеризующие практическую и теоретическую подготовленность по содержательному компоненту, представленному в данной программе. При подготовке к экзамену абитуриенту необходимо обратиться к школьной учебной литературе.

На вступительном испытании запрещается пользоваться источниками получения информации, включая электронные и средствами связи.

СОДЕРЖАНИЕ ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ

Введение

Введение в естествознание. Природа-среда обитания и источник жизни человека. Взаимоотношения человека и природы, их диалектика. Природа – источник творческого вдохновения деятелей искусства.

Естествознание — единство наук о природе. Материя и формы ее существования. Диалектика естествознания. Основные этапы его развития. Понятие о естествознании, как системе научных знаний о природе.

Естествознание и методы познания мира

Взаимосвязь между наукой и технологиями. История изучения природы. Прогресс в естественных науках и его вклад в развитие цивилизации. Методы научного познания и их составляющие: наблюдение, измерение, эксперимент, моделирование, гипотеза, вывод, построение теории. Формы познания: научноеи ненаучное. Два уровня научного познания: эмпирический (чувственный, опытный) и теоретический (рациональный). Моделирование на теоретическом уровнепознания и типы моделей (идеальная, аналогия, математическая). Роль мысленного эксперимента и математического моделирования в становлении и развитииестественных наук.

Язык естествознания. Биология. Биологическая систематика и ее важнейшие таксоны. Биноминальная номенклатура. Понятие вида. Систематика животных. Понятие породы. Систематика растений. Понятие сорта. Биологическая номенклатура — основа профессиональной деятельности. Химия. Тривиальные названия. Рациональная номенклатура. Международная номенклатура ИЮПАК. Химия. Химические элементы и происхождение их названий. Классификация неорганических веществ (оксиды, кислоты, основания, соли)

и принципы образования их названий. Физика. Единицы измерения физических величин на Руси. Единицы измерения физических величин в некоторых других странах. Международная система единиц измерения физических величин – СИ. Основные и производные единицы измерения физических величин СИ.

Естественнонаучная картина мира. Картины мира: религиозная, бытовая, художественная. Естетсвеннонаучная картина мира (ЕНКМ). Эволюция ЕНКМ и ее этапы: аристотелевский, ньютоновский, эйнштейновская революция. Принципы познания в естествознании: соответствия, дополнительности, причинности, симметрии.

География

Строение Земли. Литосфера. Внутреннее строение Земли и ее химический состав. Строение и состав литосферы. Минералы и горные породы. Руды. Литосферные плиты. Землетрясения. Шкала Рихтера. Интенсивность землетрясений. Цунами.

Гидросфера. Состав гидросферы. Мировой океан. Моря. Нетипичные моря: Саргассово, Каспийское и Аральское. Воды океанов и морей. Химический состав

морской и океанической воды. Промилле. Лед в океане. Гренландия. Антарктида. Движение вод Мирового океана. Приливы и отливы. Морские течения. Типы климата. Воды суши и их классификация. Родники. Гейзеры. Минеральныеводы и их классификация. Проблема пресной воды. Озеро Байкал. Карстовые явления и образование сталактитов и сталагмитов. Аномальные свойства воды и ихзначение в природе.

Атмосфера. Атмосфера и ее состав. Вертикальное строение атмосферы: тропосфера, стратосфера, мезосфера, термосфера, экзосфера. Состав воздуха. Озоновые дыры и парниковый эффект. Погода и климат. Атмосферное давление. Ветер. Атмосферное давление. Кессонная и высотная болезни. Циклоны и антициклоны. Атмосферные фронты. Ветра и их виды: шквал, смерч, антипассат, пассат, бриз, фèн, бора, сирокко, муссоны, тайфуны, ураганы, смерчи, торнадо. Шкала Бофорта. Влажность воздуха. Психрометр и Гигрометр. Точка росы. Облака, их формы и размеры. Туман. Осадки и их типы. Радуга.

Природно-климатические зоны России: арктических пустынь, тундр, лесотундр, тайги, смешанных и широколиственных лесов, лесостепная, степей, полупустынь, пустынь. Разнообразие и приспособленность живых организмов к той или иной природно-климатической зоне.

Биология

Жизнь, признаки живого и их относительность. Основные свойства живогоорганизма: единство химического состава, обмен веществ, самовоспроизведение, наследственность, изменчивость, развитие и рост, раздражимость, дискретность и целостность, энергозависимость. Живые системы, как самоуправляющиеся, саморегулирующиеся, самоорганизующиеся системы. Три начала термодинамики. Понятие энтропии.

Происхождение жизни на Земле. Основные гипотезы происхождения жизнина Земле: креационизм, гипотеза самопроизвольного зарождения жизни из неживого, концепция биогенеза, гипотеза панспермии. Гипотеза происхождения жизни путем биохимической эволюции (гипотеза Опарина-Холдейна). Дискуссия о возможности существования внеземных цивилизаций.

Химический состав клетки. Химическая организация клетки на атомном – элементном уровне. Макроэлементы. Микроэлементы. Молекулярный уровень химической организации клетки (молекулярный состав клетки). Неорганические соединения клетки. Вода и ее роль. Минеральные соли. Органические вещества клетки.

Уровни организации жизни. Клеточный уровень организации жизни на Земле. Тканевый уровень. Типы тканей животных (эпителиальная, соединительная, мышечная, нервная) и растений (образовательная, покровная, основная и проводящая). Органный уровень. Организменный уровень. Популяционно-видо- вой уровень. Биогеоценотический уровень. Биоценоз. Биосферный уровень.

Прокариоты и эукариоты. Прокариоты и эукариоты. Бактерии и их классификация: по форме (бациллы, кокки, спириллы, вибрионы), по типу питания (сапрофиты, паразиты), по отношению к кислороду (аэробы, анаэробы). Особенности строения бактерий и их жизнедеятельности. Роль бактерии в природе и

жизни человека. Цианобактерии (сине-зеленые водоросли) и особенности их строения и жизнедеятельности. Роль цианобактерий в природе. Строение клетки укариотов.

Клеточная теория. Простейшие. Вирусы. Клеточная теория и ее положения. Простейшие: жгутиковые, ресничные, амебоидные. Значение простейших в природе и жизни человека. Вирусы. Строение и особенности жизнедеятельности вирусов. Вирусные заболевания человека. ВИЧ и СПИД. Грибы. Роль грибов в прроде и в хозяйстве человека.

Понятие биологической эволюции. Эволюционная теория. Понятие биологической эволюции. Длительность, необратимый характер, направленность эволюции. Основные направления эволюции. Биологический прогресс. Биологический регресс. Антропогенез и его этапы.

Предпосылки создания эволюционной теории Ч.Дарвина. Логическая структура дарвинизма (избыточная интенсивность размножения, борьба за существование и ее виды, естественный отбор). Синтетическая теория эволюции. Микроэволюция. Видообразование (географическое и экологическое). Макроэволюция. Движущие силы эволюции: мутационный процесс, популяционные волны, изоляция. Формы естественного отбора: стабилизирующий, движущий, дизруптивный.

Современные методы поддержания устойчивости биогеоценозов и искусственных экосистем. Понятие экосистемы. Биотоп. Биоценоз. Биогеоценоз, структура и основы функционирования. Отличия биогеоценоза от экосистемы. Нестабильные и стабильные экосистемы. Биогеохимические потоки.

Круговороты вещества. Принципы устойчивости биогеоценозов. Научные основы создания и поддержания искусственных экосистем. Производство растительной и животноводческой продукции: проблемы количества и качества. Кластерный подход как способ восстановления биогеохимических потоков в искусственных экосистемах. Антибиотики, пестициды, стимуляторы роста, удобрения и их природные аналоги. Проблема устойчивости городских экосистем.

Пищевые цепи. Экология. Экологические факторы. Типология живых организмов экосистемы: продуценты, консументы, редуценты (сапрофиты). Автотрофы. Гетеротрофы. Понятие о пищевых (трофических) цепях биогеоценоза. Пищевая цепь. Два основных типа трофических цепей — пастбищные (цепи выедания) и детритные (цепи разложения). Пищевая сеть. Экологические пирамиды (численности, биомассы, энергии). Правило 10%. Понятие об экологии. Основные проблемы экологии. Экологические факторы: абиотические, биотические, антропогенные.

Понятие о почве и классификация почв. Процесс почвообразования. Эдафические факторы среды и приспособленность к ним живых организмов. Значение почвы в природе и жизни человека: среда обитания живых организмов; экономическое значение, обладает плодородием, оказывает существенное влияние на состав и свойства всей гидросферы Земли, является главным регулятором состава атмосферы Земли, важнейший компонент биогеоценоза. Цвет и диагностика почв.

Биотические факторы. Биотические взаимоотношения между организмами: конкуренция, хищничество, симбиоз (мутуализм, комменсализм), паразитизм (экто- и эндопаразиты). Примеры биотических взаимоотношений в природе.

Биосфера и ее границы. Концепция эволюции биосферы В.И. Вернадского. Ноосфера. Техносфера. Основные подходы в учении о биосфере: энергетический, биогеохимический, информационный, пространственно-временной, ноосферный. Биосфера: этапы формирования и сценарии развития. Актуальные экологические проблемы: глобальные, региональные, локальные, их причины и следствия. Экологические проблемы энергетической отрасли. Альтернативная энергетика. Рациональное использование энергии и энергосбережение. Энергетическая безопасность. Транснациональные проекты в области энергетики. Методы изучения состояния окружающей среды. Изменения окружающей среды, как стимул для развития научных исследований и технологий. Естественно- научные подходы к решению экологических проблем, природосберегающие технологии. Международные и российские программы решения экологических проблем и их эффективность.

Проблема увеличения количества отходов. Бытовые, коммунальные, промышленные отходы. Современные технологии сбора, хранения, переработки и утилизации отходов. Подходы к сокращению отходов, безотходные технологии. Источники загрязнения окружающей среды. Перспективные технологии ликвидации последствий загрязнения окружающей среды. Рекультивация почвы и водных ресурсов. Системы водоочистки. Международные про-

граммы по обращению с отходами и сокращению воздействия на окружающую среду, их эффективность.

Взаимосвязь состояния окружающей среды и здоровья человека. Деградация окружающей среды. Программы мониторинга качества окружающей среды. Загрязнение воздушной, водной среды, почвы, причины и следствия. Шумовое загрязнение. Электромагнитное воздействие. ПДК. Устойчивость организма и среды к стрессовым воздействиям. Заболевания, связанные со снижением качества окружающей среды. Индивидуальные особенности организма при воздействии факторов окружающей среды. Современные технологии сокращения негативного воздействия факторов окружающей среды. Научные основы проектирования здоровой среды обитания.

Физика

Хронология астрономических представлений и открытий: геоцентрическая система мира; антропоцентрическая система мира; гелиоцентрическая система мира. Астрономы 16-19 в.в. и их вклад в развитие представлений о Вселенной. Вселенная: теория возникновения, структура, состав, эволюция. Астрономия как научный фундамент освоения космического пространства. Космология. Вклад отечественной науки в мировую космологию. Ракетоносители, искусственные спутники, орбитальные станции, планетоходы. Орбитальная астрономическая обсерватория (ОАО). Использование спутниковых систем в сфере информационных технологий. Современные научно-исследовательские программы по изучению космоса и их значение. Проблемы, связанные с освоением космоса, и пути их решения. Международное сотрудничество.

Свет. Развитие представлений о природе света. Электромагнитное излучение. Длина волны. Частота колебаний. Шкала электромагнитных волн. у-Лучи, рентгеновское излучение, ультрафиолетовое излучение, видимое излучение, инфракрасное излучение и их роль в природе и жизни человека. Фотон. Законы отражения и преломления света. Относительный показатель преломления. Факторы, влияющие на показатель преломления: природа вещества, температура, длина волны падающего излучения. Рефрактометр. Дисперсия, дифракция и интерференция света. Влияние света на организацию жизненного цикла организмов. Биоритмы. Фотосинтез. Классификация растений на светолюбивые, тенелюбивые и теневыносливые. Фототропизм. Значение света для ориентации живых существ в пространстве. Биолюминесценция и ее роль в жизни животных.

Термодинамика и ее прогностическое значение. Внутренняя энергия термодинамической системы. Первое начало термодинамики. Теплопередача. Теплопроводность. Конвекция: естественная и принудительная. Тепловое излучение. Тепловое равновесие. Температура. Второе начало термодинамики. Количествотеплоты. Теплоемкость. Тепловое равновесие. Термодинамические системы трех типов: изолированные, закрытые и открытые. Температура, как параметр состояния термодинамической системы. Терморегуляция в живой природе. Теплопродукция и теплоотдача. Механизмы терморегуляции живот-

ных и растений. Температура тела человека и ее физиологическая роль. Классификация животных потемпературному режиму на гомойотермные пойкилотермные и гетеротермные. Классификация организмов по температурному интервалу обитания: эвритермные и стенотермные. Акклиматизация. Температурный режим.

Понятия пространства и времени. Пространство и время в классической механике Ньютона. Абсолютное пространство. Однородность пространства. Изотропность пространства. Инерциальная система отсчета и первый закон Ньютона. Преобразования Галилея и принцип относительности Галилея. Абсолютное время. Специальная теория относительности (СТО). Два постулата СТО и основные следствия, вытекающие из них. Общая теория относительности (ОТО). Биоритмы. Биоритмы. Типы биоритмов: физиологические и экологические. Примеры различных типов биоритмов у растений и животных. Фотопериодизм. Биоритмы человека. Дисинхронизм.

Способы передачи информации в живой природе. Первая и вторая сигнальные системы. Обмен информацией на различных уровнях организации жизни. Реакции матричного синтеза (принцип комплементарности). Фагоцитоз. Рефлекс, Этология. Информация и человек. Возникновение и развитие носителей информации с древнейших времен до нашего времени. Эволюция современных информационных ресурсов

Химия

Строение молекулы воды. Вода как растворитель. Физические свойства воды: аномальная температурная зависимость плотности воды; высокое поверхностное натяжение воды; аномально высокие значения температур кипения и плавления воды; высокое значение теплоемкости воды. Значение физических свойств воды для природы.

Электролитическая диссоциация. Основные положения теории электролитической диссоциации (ТЭД). Электролиты и неэлектролиты. Классификация ионов по различным основаниям. Механизмы диссоциации электролитов с разным типом химической связи. Степень электролитической диссоциации. Соли, кислоты и основания в свете ТЭД.

Растворимость. pH, как показатель среды раствора. Растворимость и ее количественная характеристика — коэффициент растворимости. Массовая доля растворенного вещества в растворе. Вода как амфолит. Понятие pH раствора. Значение pH в природе. Значения pH физиологических жидкостей человека в норме. Химические свойства воды. Взаимодействие воды с металлами. Взаимодействие воды с оксидами. Гидратация. Взаимодействие воды с солями. Гидролиз. Разложение воды. Понятие об электролизе и фотолизе.

Соли. Классификация солей. Наиболее распространенные кислые соли, их применение. Жесткость воды. Соли как минералообразующие вещества. Соли –абиотический фактор. Приспособленность растений и животных к различному солевому режиму. Влияние соли на организм человека.

Периодический закон. Открытие Д.И. Менделеевым периодического закона. Периодичность в изменении свойств химических элементов и их соединений. Периодическая система химических элементов, как графическое отоб-

ражение периодического закона. Структура периодической таблицы. Периоды (большие и малые) и группы (главные и побочные).

Благородные газы, причина их существования в атомарном состоянии. Применение благородных газов.

Ионы и их классификация: по заряду (анионы и катионы), по составу (простые и сложные). Схема образования ионной связи. Ионные кристаллические решетки. Хлорид натрия — типичный представитель соединений с ионным типом связи.

Ковалентная связь как связь, возникающая за счет образования общих электронных пар путем перекрывания электронных орбиталей. Кратность ковалентной связи. Обменные и донорно-акцепторные механизмы образования ковалентной связи. Электроотрицательность (ЭО). Классификация ковалентных связей: по ЭО (полярная и неполярная). Диполи.

Общие физические свойства металлов: электропроводность, прочность, теплопроводность, металлический блеск, пластичность. Сплавы черные и цветные. Сталь, чугун. Латунь, бронза, мельхиор. Металлическая связь. Зависимость электропроводности металлов от температуры.

Основные положения молекулярно-кинетической теории. Идеальный газ. Уравнение состояния идеального газа. Агрегатные состояния веществ. Газообразное состояние. Закон Авогадро и следствия из него. Жидкое состояние веществ. Текучесть. Твердое состояние вещества. Кристаллические решетки разных типов для твердого состояния вещества. Понятие о плазме. Высоко- и низкотемпературная плазмы и их применение. Взаимные переходы между агрегатными состояниями веществ.

Кристаллические и аморфные вещества. Признаки и свойства аморфности. Относительность истины в химии. Жидкие кристаллы и их применение в технике. Относительность истины в биологии и физике.

Классификация природных веществ. Органические и неорганические вещества. Изомерия. Классификация неорганических веществ. Простые вещества: металлы, неметаллы, благородные газы. Относительность деления простых веществ на металлы и неметаллы. Аллотропия и ее причины. Сложные вещества: оксиды, кислоты, основания, соли. Относительность классификации сложных веществ.

Особенности состава, строения и свойств органических соединений. Изомерия, как функция химического строения на примере этилового спирта и диметилового эфира. Причины многообразия органических соединений.

Классификация органических соединений. Углеводороды: алканы, алкены, алкины, алкадиены и арены. Классы органических соединений, молекулы которых содержат функциональные группы: гидроксильную, карбонильную, карбоксильную, аминогруппу. Относительность деления органических соединенийна классы.

Основные понятия химии высокомолекулярных соединений: мономер, полимер, элементарное звено, степень полимеризации. Способы получения полимеров: реакции полимеризации и поликонденсации. Биополимеры и их биологическая роль. Пластмассы. Термопласты и реактопласты. Представите-

ли пластмасс и области их применения. Волокна. Природные (животного и растительного происхождения) и химические (искусственные и синтетические) волокна. Представители волокон и области их применения. Неорганические полимеры, как вещества атомной структуры.

Понятие дисперсной системе. Классификация дисперсных систем по размерам дисперсной фазы и агрегатному состоянию дисперсионной среды и дисперсной фазы. Значение дисперсных систем в природе, промышленности и повседневной жизни человека. Грубодисперсные системы и их классификация (суспензии, эмульсии, аэрозоли). Применение этих систем в технике и быту. Тонко-дисперсные (коллоидные) системы, их классификация (золи и гели). Коагуляция. Синерезис.

Химические реакции и их классификация. Понятие о скорости химической реакции. Необратимые и обратимые реакции. Окислительновосстановительныереакции (OBP). Электролиз.

Библиографический список

Школьные учебники по естествознанию 10-11 класс, изданные с 2016 годаи позднее.