Документ подписан простой электрон МИНИД ПЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Информация о владельное государственное бюджетное образовательное учреждение высшего образования ФИО: Кислова Наталья Николасе на регитирования образования образования образования образования образования

Дата подписания: 14.03,2024 13:20:35 Уникальный програмара, информатики, прикладной математики и методики их преподавания

52802513f5b14a975b3e9b13008093d5726b159bf6064f865ae65b96a966c035

Утверждаю Проректор по учебно-методической работе и качеству образования Н.Н. Кислова

Макарова Елена Леонидовна

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения промежуточной аттестации по дисциплине «Теория вероятностей и математическая статистика»

Направление подготовки: 44.03.05 Педагогическое образование (с двумя профилями подготовки)

Направленность (профиль): «Информатика» и «Дополнительное образование (в области информатики и ИКТ)» Квалификация выпускника Бакалавр

Рассмотрено Протокол №1 от 25.08.2020 Заседания кафедры информатики, прикладной математики и методики их преподавания

Одобрено Начальник Управления образовательных программ Н.А. Доманина

Пояснительная записка

Фонд оценочных средств (далее – ФОС) для промежуточной аттестации по дисциплине «Теория вероятностей и математическая статистика» разработан в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования – бакалавриат по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки), утвержденного приказом Министерства образования и науки Российской Федерации от 22 февраля 2018 г. № 125 (зарегистрирован Министерством юстиции Российской Федерации 15 марта 2018 г., регистрационный № 50358), с изменениями, внесенными приказами Министерства науки и высшего образования Российской Федерации от 26 ноября 2020 г. № 1456 (зарегистрирован Министерством юстиции Российской Федерации 27 мая 2021 г., регистрационный № 63650) и от 8 февраля 2021 г. № 83 (зарегистрирован Министерством юстиции Российской Федерации 12 марта 2021 г., регистрационный № 62739), основной профессиональной образовательной программой «Информатика» и «Дополнительное образование (в области информатики и ИКТ)» с учетом требований профессионального стандарта «01.001 Педагог (педагогическая деятельность в сфере дошкольного, начального общего, основного общего, среднего общего образования) (воспитатель, учитель)», утвержденного приказом Министерства труда и социальной защиты Российской Федерации от 18 октября 2013 г. № 544н. (зарегистрирован Министерством юстиции Российской Федерации 6 декабря 2013 г., регистрационный № 30550), с изменениями, внесенными приказами Министерства труда и социальной защиты Российской Федерации от 25 декабря 2014 г. № 1115н (зарегистрирован Министерством юстиции Российской Федерации 19 февраля 2015 г., регистрационный № 36091) и от 5 августа 2016 г. № 422н (зарегистрирован Министерством юстиции Российской Федерации 23 августа 2016 г., регистрационный № 43326), 01.003 «Педагог дополнительного образования детей и взрослых» утвержденный приказом Министерства труда и социальной защиты Российской Федерации от 22 сентября 2012 г. № 652н от 22.09.2021 г. (Зарегистрировано в Минюсте России 17.12.2021 N 66403).

Цель ФОС для промежуточной аттестации – установление уровня сформированности части компетенции УК-1.

Задачи ФОС для промежуточной аттестации - контроль качества и уровня достижения результатов обучения по формируемым в соответствии с учебным планом компетенциям:

УК-1. Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

Знает: математическую терминологию и символику; основные типы задач по теории вероятностей и математической статистике; этапы решения типовых задач по теории вероятностей и математической статистике.

Умеет: анализировать задачу, выделяя её базовые составляющие; осуществлять декомпозицию задачи

Знает: основные понятия теории вероятностей и математической статистики.

Умеет: осуществлять постановку задачи; анализировать условие и определять метод решения поставленной задачи

Знает: способы и приемы решения типовых задач по теории вероятностей и математической статистике.

Умеет: рационально решать задачи по дискретной математике

Умеет: комментировать процесс решения задачи по теории вероятностей и математической статистике

Умеет: оценивать эффективность различных методов при решении задач теории вероятностей и математической статистики

Требование к процедуре оценки:

Помещение: особых требований нет. Оборудование: особых требований нет. Инструменты: особых требований нет. Расходные материалы: бумага, ручка.

Доступ к дополнительным справочным материалам: не предусмотрен.

Нормы времени: 60 мин.

Проверяемая компетенция:

УК-1. Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

Проверяемый индикатор достижения компетенции:

УК-1.2. Находит, критически анализирует и выбирает информацию, необходимую для решения поставленной задачи Проверяемые результаты обучения:

Знает: основные понятия теории вероятностей и математической статистики.

Умеет: осуществлять постановку задачи; анализировать условие и определять метод решения поставленной задачи.

Тип (форма) задания 1: тест.

Пример типовых заданий (оценочные материалы):

Содержание задания 1:

1. Установите соответствие между терминами и их определениями

1.	Вероятность	Явление, которое может произойти в ходе осущ	дествления некоторых
		овий	
2.	Случайное событие	Осуществление некоторых условий, в которых набли	юдается результат
3.	Достоверное событие	Событие, которое может произойти или не произойти та	и в результате данного
4.	Невозможное событие	Событие, которое обязательно произойдет в результа	ате данного опыта

5.	Независимые события	Д. Событие, которое заведомо не произойдет в результате данного опыта						
6.	Произведение событий	Е. Событие, состоящее в наступлении хотя бы одного из данных двух событий						
7.	Несовместные события	Ж. Событие, состоящее в совместном наступлении всех событий						
8.	Сумма событий	3. Если появление одного из двух событий исключает появление другого в одном и том же испытании, то это						
9.	Испытание	И. Если появление события А не изменяет вероятности события В, то события						
10.	Событие	К. Численная мера объективной возможности появления события данном испытании называется						

2. Установите соответствие между формулами и их названиями

$1. P(AB) = P(A) \cdot P_A(B)$	а. Условие независимости события А от события В
$2. \ P(A) = \frac{m}{n}$	b. Формула Бейеса
3. $P(A) = \sum_{i=1}^{n} P(B_i) P_{Bi}(A)$	с. Формула Бернулли
4. $P_A(B_i) = \frac{P(B_i)P_{B_i}(A)}{P(A)}$	d. Теорема умножения вероятностей для любых событий A и B
$5. P_n(k) = C_n^k p^k q^{n-k}$	е. Теорема сложения вероятностей для любых событий А и В
$6. P(B) = P_A(B) u P(A) = P_B(A)$	f. Формула полной вероятности
7. $P(A+B) = P(A) + P(B) - P(AB)$	g. Классическая формула вычисления вероятности

- 3. В ящике имеется 10 деталей, среди которых 6 красных, а остальные зелёные. Сборщик наудачу извлекает одну деталь. Найти вероятность того, что извлечена красная деталь
- a. 0,6
- b. 0,4
- c. 10
- d. 6
- e. 4
- 4. Сколько различных трёхзначных чисел можно составить из цифр 0,2,3,5,7, если цифры не повторяются
- a. 10
- b. 22
- c. 48
- d. 111
- e. 0
- 5. Монета брошена два раза. Вероятность того, что хотя бы один раз появится «герб» равна:
- a. 1;
- b. 1/4;
- c. 3/4;
- d. ½.
- e. 0
- **6.** Абонент забыл две последних цифры телефонного номера и, зная, лишь, что они различны, набрал их наудачу. Сколькими способами он это может сделать?
 - a. 2!;
 - b. A_{10}^{2} ;
 - c. C_{10}^2

- d. $\frac{2}{10}$;
- e. $\frac{1}{2}$

7. Вероятность отказа для первого элемента в параллельном соединении равна 0,6, второго — 0,4. Вероятность отказа всей цепи равна:

- a. 0,24
- b. 0,48
- c. 0
- d. 1
- e. 0,5

8. Заготовка может поступить для обработки на один из двух станков с вероятностями 0,7 и 0,3 соответственно. Вероятность брака для первого станка равна 0,2, для второго равна 0,1. Найти вероятность того, что наугад взятая деталь бракованная.

- a. 0.13
- b. 0,44
- c. 0,5
- d. 0,01
- e. 0

9. Задача «Заготовка может поступить для обработки на один из двух станков с вероятностями 0,7 и 0,3 соответственно. Вероятность брака для первого станка равна 0,2, для второго равна 0,1. Найти вероятность того, что наугад взятая деталь бракованная» решается с использованием формулы полной вероятности. Гипотеза B_1 — заготовка обработана на первом станке. Вероятность $P(B_1)$ равна:

- a. 0,7;
- b. 0,3;
- c. 0,2;
- d. 0,1
- e. 0,5

10. В магазин вошло 5 покупателей. Найти вероятность того, что 4 из них совершат покупки, если вероятность совершить покупку для каждого из них равна 0,7

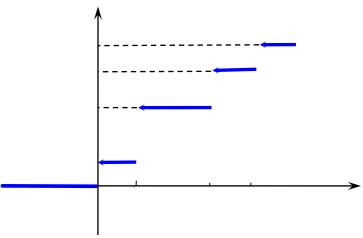
- a. 0
- b. 0,1245
- c. 0,514
- d. 0,36015
- e. 0,5698

11. Установите соответствие между терминами и их определениями

1. Генеральной дисперсией	А. Случайную величину, которая может принимать все значения из
	некоторого конечного или бесконечного промежутка, называют
2. Биномиальным	Б. Случайную величину, которая принимает отдельные
	изолированные значения с определенными вероятностями, называют
3. Дискретной	В. Соответствие между возможными значениями дискретной
	случайной величины и их вероятностями называют
4. Относительной частотой	Г. Сумму произведений возможных значений ДСВ на
	соответствующие вероятности называют
5. Законом распределения	Д. Математическое ожидание квадрата отклонения ДСВ от ее
	математического ожидания называют
6. Непрерывной	Е. Распределение вероятностей, определяемое формулой Бернулли,
	называется
7. Дисперсией	Ж. Отношение числа испытаний, в которых событие появилось, к

		общему числу фактически произведенных испытаний называют
8	Математическим ожиланием	3. Среднее арифметическое квадратов отклонений значений
0.	тистемати теским ожиданием	признака генеральной совокупности от их среднего значения,
		называется

12. Установите соответствие между формулами и их названиями


1. $M(X) = \int_{a}^{b} x f(x) dx$	А. Формула для определения длины интервала					
$2. \sigma(X) = \sqrt{D(X)}$	Б. Плотность распределения вероятностей нормально распределенной случайной величины					
3. $D(X) = \int_{a}^{b} x^{2} f(x) dx - M^{2}(X)$	В. Формула математического ожидания для дискретной случайной величины					
4. $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-a)^2}{2\sigma^2}}$	Г. Формула среднеквадратического отклонения					
$i = \frac{x_{\text{max}} - x_{\text{min}}}{1,000 + 3,221g N}$	Д. Формула дисперсии для дискретной случайной величины					
6. $M(X) = \sum x_i p_i$.	Е. Формула дисперсии для непрерывной случайной величины					
7. $D(X) = \sum (x_i - M[X])^2 p_i$	Ж. Формула математического ожидания для непрерывной случайной величины					

- 13. Дисперсии независимых случайных величин X и Y равны D(X)=4, D(Y)=5. Чему равна дисперсия случайной величины Z=2X+3Y:
 - a. 0;
 - b. 61;
 - c. 23;
 - d. 107.
 - e. 1
 - 14. Дискретная случайная величина X имеет закон распределения:

X	0,2	0,4	0,6	0,8
p	0,1	0,2	p_3	0,5

Вероятность p_3 равна:

- a. 0.1
- b. 1;
- c. 0,2;
- d. 0,3;
- e. 40.
- 15. Эмпирическая функция распределения, построенная по 100 наблюдениям, имеет вид

Тогда число наблюдений, имеющих величину, не меньшую 3, равно

- a. 19
- b. 21
- c. 0,81
- d. 47

16. При 7 последних проверках в автобусах за смену было оштрафовано 0, 2, 0, 1, 3, 0, 1 человек. Тогда оценка среднего количества выписанных штрафов за смену

- a. 0,5
- b. 1
- c. 2,5
- d. 2

Ключ:

1.	1К,2И,3Б,4В,5Г,63,7Е,8Ж,9Д,10А	2.	1d.2g.3f.4b.5c.6a.7e
3.	b	4.	С
5.	С	6.	b
7.	f	8.	b
9.	a	10.	d
11.	1Е,2В,3Д,43,5Ж,6Б,7Г,8А	12.	1Ж,2Г,3Е,4Б,5А,6В,7Д
13.	b	14.	С
15.	a	16.	b

Оценочный лист к типовому заданию 1

	Указания по оцениванию	Баллы
	Вопрос 1	4
	Вопрос 2	4
	Вопрос 3	1
	Вопрос 4	1
	Вопрос 5	1
компетенции:	Вопрос 6	1
УК-1.1. выделяя этапы	Вопрос 7	1
решению задачи	Вопрос 8	1
УК-1.4.	Вопрос 9	2
формирует	Вопрос 10	1
факты от рассуждениях	Вопрос 11	4
рассуждениях	Вопрос 12	4
	Вопрос 13	1
результаты	Вопрос 14	1
Знает:	Вопрос 15	2
символику; вероятностей и	Вопрос 16	1
типовых задач	Максимальное число баллов за	30
статистике.	задание	

Проверяемые индикаторы достижения

Анализирует задачу, ее решения, действия по

Грамотно, логично, аргументировано собственные суждения и оценки; отличает мнений, интерпретаций, оценок в других участников деятельности

Проверяемые

обучения:

математическую терминологию и основные типы задач по теории математической статистике; этапы решения по теории вероятностей и математической

Умеет: анализировать задачу, выделяя её базовые составляющие; осуществлять декомпозицию задачи; комментировать процесс решения задачи по теории вероятностей и математической статистике.

Тип (форма) задания 2: кейс

Пример типовых заданий (оценочные материалы):

Содержание кейс-задания.

Функция плотности распределения нормально распределенной случайной величины X имеет вид:

I вариант
$$f(x) = \frac{1}{5\sqrt{2\pi}}e^{-\frac{(x-1)^2}{50}}$$
 $\alpha = -1$, $\beta = 4$

II вариант
$$f(x) = \frac{1}{2\sqrt{2\pi}}e^{-\frac{(x+12)^2}{8}}$$
 $\alpha = 8$, $\beta = 18$

Задача 1. Найти основные числовые характеристики данной случайной величины: математическое ожидание, среднее квадратическое отклонение.

Задача 2. Пусть случайная величина X принимает значения от α до β . Найти вероятность того, что случайная величина попадает в заданный интервал.

Задача 3. Найти длину интервала, симметричного относительно математического ожидания, в который с вероятностью 0,9973 попадает X.

Оценочный лист к типовому заданию 2:

15.0	To Y						
15 баллов	Кейс-задача решена правильно, дано развернутое пояснение и обоснование сделанного заключения.						
	Обучающийся демонстрирует методологические и теоретические знания, свободно владеет научной						
	терминологией. При разборе предложенной ситуации проявляет творческие способности, знание						
	дополнительной литературы. Демонстрирует хорошие аналитические способности, способен при						
	обосновании своего мнения свободно проводить аналогии между темами курса.						
10 баллов	Кейс-задача решена правильно, дано пояснение и обоснование сделанного заключения. Обучающийся						
	демонстрирует методологические и теоретические знания, свободно владеет научной терминологией.						
	Демонстрирует хорошие аналитические способности, однако допускает некоторые неточности при						
оперировании научной терминологией							
5 баллов	Кейс-задача решена правильно, пояснение и обоснование сделанного заключения было дано при						
	активной помощи преподавателя. Имеет ограниченные теоретические знания, допускает						
	существенные ошибки при установлении логических взаимосвязей, допускает ошибки при						
использовании научной терминологии.							
^ ~	, i						
0 баллов	Кейс-задача решена неправильно, обсуждение и помощь преподавателя не привели к правильному						
	заключению. Обнаруживает неспособность к построению самостоятельных заключений. Имеет слабые						
	теоретические знания, не использует научную терминологию.						

Проверяемые индикаторы достижения компетенции:

УК-1.3. Рассматривает различные варианты решения задачи, оценивает их преимущества и риски

УК-1.5. Определяет и оценивает практические последствия возможных вариантов решения задачи

Проверяемые результаты обучения:

Знает: способы и приемы решения типовых задач по теории вероятностей и математической статистики.

Умеет: рационально решать задачи по теории вероятностей и математической статистики; оценивать эффективность различных методов при решении задач дискретной математики

Тип (форма) задания 3: практическая задача

Пример типовых заданий (оценочные материалы):

Содержание задания 3:

Дана таблица данных по затратам предприятия на рекламу своей продукции X и объемами продаж этой продукции Y (в условных денежных единицах) в разные месяцы:

На основе указанных данных требуется выяснить, если связь между этими двумя величинами, а если она имеется – то определить форму и степень зависимости величин. Сделать вывод.

Месяц	1	2	3	4	5	6	7	8	9	10
X	10	19	15	21	28	10	15	25	13	18
У	4	8	7	9	13	2	3	12	8	4

Ответ: Связь между этими двумя величинами есть и значимая.

Коэффициент Пирсона равен 0,85. Уравнение регрессии имеет вид у=1,37х+7,79.

Оценочный лист к типовому заданию 3:

Указания по оцениванию	Баллы			
Правильно определен вид зависимости средней выработки на одного рабочего от товарооборота и выбрана				
формула коэффициента для определения тесноты связи				
Проведен правильный расчет всех необходимых показателей, входящих в формулу коэффициента				
Проверена значимость полученного коэффициента	4			
Составлено уравнение зависимости	2			
Сделаны выводы по полученным результатам				
Максимальное число баллов за задание	15			

Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации

Код индикатора контролируемой компетенции	Наименование оценочного средства	Максимальное количество баллов	Всего баллов	Уровень освоения компетенции (в баллах)		
				Пороговый (56-70%)	Продвинутый (71-85%)	Высокий (86- 100%)
УК-1.2	Тест	30	30	18-22	23-27	28-30
УК-1.1	Кейс-задание 1	1.5	1.5	0.10	11 12	14.15
УК-1.4		15	15	9-10	11-13	14-15
УК-1.3	Задача	1.7	1.7	0.10	11 12	14.15
УК-1.5		15	15	9-10	11-13	14-15